If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-200=0
a = 16; b = 0; c = -200;
Δ = b2-4ac
Δ = 02-4·16·(-200)
Δ = 12800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12800}=\sqrt{6400*2}=\sqrt{6400}*\sqrt{2}=80\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{2}}{2*16}=\frac{0-80\sqrt{2}}{32} =-\frac{80\sqrt{2}}{32} =-\frac{5\sqrt{2}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{2}}{2*16}=\frac{0+80\sqrt{2}}{32} =\frac{80\sqrt{2}}{32} =\frac{5\sqrt{2}}{2} $
| -8y-(-6)=6 | | -7+z=3 | | -5x+32=-20x+48 | | 19−x−−−−−√+97+x−−−−−√=14 | | 16t^2-200=31 | | 3g+5=7g+40.25 | | X=43-1.5y | | 2.25t+5=35.5t+14 | | x(5x+5)=2x^2-3x+35 | | 7/5+4/5x=21/10+7/2x+1/2 | | 8w^2(2w+6w^2)=0 | | F(9)=-3x+10 | | (1/2q+1)=-3(2q-1)+4(2q+1) | | -x+16=24-13x | | x=8x-7 | | 2x-2-4x=22-12x+8x | | 2m-2=6m-40.5 | | 283=3.14•5•l+3.14•9 | | B-18-5b=6 | | -8=-(x4) | | 3k+15=-6 | | 7x+13x=14 | | 12h-8=19 | | 10b-2=7b+40.25 | | 160+x(0.15)=242.50 | | 5x/2+12=3(x+5) | | x-(4x-7)=5x=(x+21) | | 7×+13x=140 | | 2/m+16=4+6/11m | | 3y+5.2=2-5y-0.4 | | (8x-80)+(-2x+116)=180 | | 4p^2-16p+85=8 |